
 International Journal of Computer Trends and Technology Volume 72 Issue 2, 75-81, February 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I2P114 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Overcoming Challenges in Deploying Large Language

Models for Generative AI Use Cases: The Role of

Containers and Orchestration

Sriramaraju Sagi

NetApp Inc, US.

Corresponding Author : sagi.sriram@gmail.com

Received: 07 January 2024 Revised: 07 February 2024 Accepted: 19 February 2024 Published: 29 February 2024

Abstract - This research delves into using Language Models (LLMs) in converged infrastructure, specifically focusing on

container technologies like Kubernetes and OpenShift for orchestration purposes. The passage discusses the challenges

involved in implementing LLMs, including scalability, performance issues and security considerations. It suggests that

containers can effectively address these challenges. Additionally, it explores the benefits of using containers to deploy LLMs,

such as scalability, optimized resource utilization, enhanced flexibility, increased portability, and strengthened security

measures. Furthermore, it examines how Suse Rancher plays a role in managing applications that are containerized to

ensure both security and scalability. The validation and analysis section provides an assessment of a study that utilizes an

infrastructure platform called FlexPod to evaluate LLM models across container orchestration platforms, demonstrating the

practicality and advantages of integrating FlexPod Datacenter.

Keywords - Large Language Models (LLM), Containerization, Scalability, Datacenter, Kubernetes.

1. Introduction
Sophisticated artificial intelligence systems, known as

Large Language Models (LLMs), have undergone training

using vast amounts of written material. This training allows

them to understand and generate language that closely

resembles communication. By utilizing deep learning

algorithms, LLMs can. Comprehend language patterns and

structures, enabling them to produce coherent and

contextually appropriate text. These models possess a range

of capabilities, such as answering questions, completing

sentences and even generating documents. LLMs find

applications in domains like language translation, content

creation and chatbot development. As researchers

continuously refine their training methods and algorithms

for LLMs, these models continue to evolve and improve.

The deployment of language models for AI purposes

has become increasingly essential in the field of artificial

intelligence. These models have the ability to generate text

that sounds natural and human, making them useful in

applications such as chatbots, language translation and

content creation. However, it is crucial to use LLMs with

caution since they are powerful tools. Proper training and

fine-tuning are necessary to avoid biases and inaccuracies in

the generated text. Moreover, it is essential to take into

account the concerns associated with the utilization of

LLMs. This includes assessing the possibility of misuse and

the potential effects on employment within particular

industries. Fundamentally employing LLMs for AI purposes

holds importance because they have the ability to improve

and automate language related tasks while ensuring a high

standard of excellence and precision.

Deploying language models (LLMs) presents

challenges, including scalability, performance and security.

One of the difficulties in LLM deployment revolves around

scalability since these models require computational

resources to function effectively. Moreover, response times

can be slow, leading to an impact on user experience. To

overcome scalability and performance concerns,

organizations may need to invest in hardware and optimize

their software to handle the demands of LLMs efficiently.

Another challenge lies in ensuring the security of deployed

LLMs, as they can be vulnerable to attacks that compromise

integrity and output, resulting in consequences.

Organizations must implement access controls, monitor

activity, and regularly conduct security audits to mitigate

these risks.

Furthermore, regulatory compliance is crucial when

deploying LLMs due to data privacy and security

requirements. Organizations must guarantee adherence to all

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sagi.sriram@gmail.com

Sriramaraju Sagi / IJCTT, 72(2), 75-81, 2024

76

regulations before deploying an LLM, as noncompliance

can lead to fines and legal repercussions. Despite these

challenges, successful deployment of LLMs is achievable

with strategies and investments. By addressing scalability

concerns, optimizing performance factors, and prioritizing

security measures while also ensuring compliance at all

levels, organizations can ensure effective usage of their

LLMs while maintaining secure operations within the

boundaries set by relevant regulations.

Fig. 1 Typical LLM lifecycle

2. Containers for AI LLM Models
The use of language models (LLMs) in training, fine-

tuning and inference tasks presents a significant challenge in

the field of artificial intelligence (AI) and machine learning

(ML) due to their complex nature, computational

requirements and scalability needs. Containers, those

managed by platforms like Kubernetes and OpenShift, play

a role in overcoming these challenges.

The advent of LLMs has brought about a

transformation in AI and ML, offering capabilities in natural

language processing, text generation and comprehension.

However, implementing these models comes with its set of

hurdles, such as the need for computing resources, efficient

workload scaling and the demand for resilient, adaptable

and secure development and deployment environments.

Containers managed by platforms like Kubernetes and

OpenShift have emerged as solutions to address these

challenges.

Containers offer an advantage when it comes to

scalability in LLM deployment. They bring together the

application and its dependencies into an entity, making

scalability easier and more efficient. Kubernetes and

OpenShift take this advantage further by automating the

deployment, scaling and management of applications. This

is particularly beneficial for LLMs because their resource

requirements can vary significantly between the training

phase, which demands processing power and inference,

which may require scaling out across instances to handle

simultaneous requests. One of the benefits of using

containers is improved resource efficiency. By allowing

containerized applications to share the operating system,

kernel overhead is minimized. This is crucial for LLMs as

they have demanding memory needs. Kubernetes and

OpenShift enhance resource utilization by utilizing

scheduling algorithms that effectively distribute workloads

across the cluster to make the most out of resources.

The containerized approach provides flexibility and

ease of use. Developers can package LLMs (Logical Link

Managers) and their dependencies into containers, ensuring

consistency across environments and simplifying the

transition between development, testing and production

setups. Kubernetes and OpenShift add a layer of abstraction

that hides the underlying infrastructure details, making it

easy to deploy LLMs on premises in the cloud or systems

without any complications.

Containers offer a way to iterate and develop LLMs.

Developers can make changes within containers without

affecting the application, allowing for the adoption of

continuous integration and continuous deployment (CI/CD)

practices. Kubernetes and OpenShift further enhance this

capability by automating deployment procedures,

facilitating testing, and implementing upgrades or new

features.

Training and fine-tuning language models (LLMs)

require computational resources, often leading to the need

for distributed computing strategies. Kubernetes or

OpenShift-managed containers simplify the distribution of

these tasks across nodes, effectively managing the workload

and optimizing hardware utilization. Managing iterations

and versions of LLMs can be complex due to model

development and training. However, containers streamline

version control by encapsulating model versions, while

Kubernetes and OpenShift provide rollback capabilities to

revert to versions if necessary, enhancing reliability and

ease of management.

When deploying LLMs in tenant environments,

ensuring security is crucial. Containers offer a level of

isolation between applications, minimizing the risk of

interference or breaches. Kubernetes and OpenShift further

enhance security through features like namespace isolation,

network policies and secure access controls. This ensures

that LLM deployments are safeguarded at levels. The

deployment of language models presents challenges that

require robust, scalable and efficient solutions. Containers

orchestrated by systems such as Kubernetes and OpenShift

provide a solution by offering scalability, resource

efficiency, flexibility and enhanced security as AI and ML

progress containers will continue to play a role in deploying

and managing LLMs. They are essential for enabling

dependable and efficient AI applications.

Suse Rancher is a container management system that

can handle the complexities of deploying language models

(LLMs). It provides a scalable infrastructure for running

Sriramaraju Sagi / IJCTT, 72(2), 75-81, 2024

77

containerized applications, including LLMs. Suse Rancher

ensures operations with features like orchestration, resource

management, and high availability. To enhance security, it

incorporates measures such as access controls and

vulnerability scanning to protect against access and potential

attacks on LLM deployments. Integrating with Kubernetes

Suse Rancher enables scaling and efficient utilization of

resources based on workload demands. Additionally, it

ensures compatibility with cloud providers to deploy LLMs

in hybrid or multi-cloud environments while maintaining

unified management and security protocols.

This paper aims to explore infrastructure solutions for

deploying LLMs using Kubernetes clusters. It specifically

examines the benefits of utilizing a converged infrastructure

solution like FlexPod Datacenter in conjunction with

Kubernetes.

Fig. 2 OpenShift container platform

3. Literature Review
Several studies have explored the utilization of

intelligence (AI) in Kubernetes with a focus on improving

container scheduling (Jo Martinez, 2021). The research

paper introduces a strategy called Kubernetes Container

Scheduling Strategy (KCSS), which leverages AI to

enhance scheduling efficiency and minimize costs for

workloads and services. KCSS utilizes AI to enable

multicriteria node selection, allowing the scheduler to gain

an understanding of both the state of the cloud and the user's

requirements. Additionally, the AI Scheduler empowers

customers to effectively utilize GPUs, a whole number of

GPUs, and multiple GPU nodes for distributed training on

Kubernetes.

In another study by Toka (2020), a scaling engine for

Kubernetes that offers auto-scaling decisions specifically

designed to handle requests is presented. The effectiveness

of this forecast scaling engine and its proposed management

parameter is evaluated through simulations and

measurements using collected web traces. The results

showcase improved resource allocation in response to

service demand. By implementing this auto-scaling engine

in Kubernetes, there is a reduction in dropped requests while

requiring higher resource allocation compared to the default

baseline.

In a paper written by Thurgood (2019), the focus is on

discussing how well Kubernetes can handle workloads that

rely on AI applications. The paper also introduces a method

Service Mesh: Serverless

Builds: CI/CD Pipelines

Full Stack Logging

Chargeback

Platform Services

Databases Languages

Runtimes: Integration

Business Automation

100+ ISV Services

Application Services

Developer CLI VS Code

extensions IDE Plugins

Code Ready Workspaces

CodeReady Containers

Developer Services

Cluster Services

Automated Ops Over-The-Air Updates: Monitoring Registry Networking Router Kube Virt: OLM: Helm

Kubernetes

Red Hat Enterprise Linux & RHEL CoreOS

Physical Virtual Physical Virtual Managed cloud

(Azure, AWS, IBM, Red Hat)

Manage Workloads Build Cloud-Native Apps Developer Productivity

Sriramaraju Sagi / IJCTT, 72(2), 75-81, 2024

78

that uses Free and Open-Source Software (FOSS) to expand

Kubernetes worker nodes, making them more efficient in

handling these workloads. The challenges related to

scalability and security are also addressed in the paper.

The main findings from Dang Quang's research (2021)

suggest using a custom autoscaler, which proves to be more

accurate and faster than the default HPA. Additionally, their

Bi LSTM prediction model outperforms others.

Wus study (2020) reveals that humans' manual

allocation of GPU resources is inefficient. To address this

issue, an automatic machine-learning platform was

developed to handle resource management and job

allocation. Experiments were conducted to validate the

feasibility of this platform.

Lees research (2020) highlights discoveries. These

include proposing a flexible and scalable machine learning

framework built on Kubernetes, which effectively utilizes

resources. The framework also incorporates functionalities

that streamline the modeling process for machine learning

developers. Empirical case studies provide evidence of the

platform's effectiveness in overcoming obstacles in machine

learning.

Various research studies have been conducted to

explore methods in the realm of AI and Kubernetes. These

include using AI-driven forecasting techniques for auto-

scaling, implementing an Open-Source Software (FOSS)

solution to adjust the number of Kubernetes worker nodes

and developing a custom autoscaler that employs a deep

neural network model. One proposed framework called

KubeEdge.AI aims to leverage KubeEdge for edge AI

applications. Additionally, the KFServing project is being

considered as a serverless option for machine learning

inference. Collectively, these studies demonstrate how AI

can significantly improve resource utilization, performance,

and scalability on Kubernetes. By utilizing platforms like

KubeEdge.AI and exploring options such as the KFServing

project, organizations can further enhance their capabilities

in edge AI. Streamline machine learning inference

processes. These studies emphasize the evolution of AI

technologies within the Kubernetes ecosystem, paving the

way for efficient and intelligent applications across various

industries.

4. Validation and Analysis
In this study, we used an infrastructure platform called

FlexPod. It combines computing resources from Cisco and

storage resources from NetApp. We tested LLM models on

container orchestration platforms like RedHat OpenShift

and Suse Rancher. During our testing, we provided

customers with ways to incorporate the core infrastructure

layer and its automation, as shown in the accompanying

image. We demonstrated the deployment of the Kubernetes

container platform along with integrating software using AI

framework management tools for its lifecycle management

on top of the infrastructure layer. The FlexPod Datacenter

solution is an approved approach for implementing Cisco

and NetApp technology and products to build a shared

private and public cloud infrastructure.

Fig. 3 Typical End-to-End Infrastructure with containers

The FlexPod Datacenter solution is an authorized

method for implementing Cisco and NetApp technology and

products to construct a communal private and public cloud

infrastructure. Cisco and NetApp have collaborated to

provide a range of FlexPod solutions that empower

important data center platforms. The integration of SUSE

Rancher ECM with the FlexPod solution streamlines the

process of deploying and managing the container system.

The integration of Ansible with the FlexPod solution

automates the process of deploying the FlexPod

infrastructure and installing SUSE Rancher. This allows

customers to efficiently program and automate the

infrastructure on a large scale, providing flexibility and

extending the advantages of automation to the entire system.

The FlexPod Datacenter for the SUSE Rancher Enterprise

Container Management system provides the following

significant advantages for customers:

• An all-encompassing solution that facilitates the

complete SUSE software-defined Linux and

Kubernetes stack for containerized and AI/ML

applications.

Sriramaraju Sagi / IJCTT, 72(2), 75-81, 2024

79

• A standardized framework that enables fast, consistent,

and error-free deployments of workload domains based

on FlexPod.

• Automated life cycle management ensures that all

system components are kept up to date.

• Streamlined cloud-based administration of diverse

FlexPod components.

• The design is modular and can easily integrate with

hybrid cloud environments. It is also driven by policies.

• The FlexPod architecture is designed to be highly

available, adaptable, and scalable.

• The cooperative support model and Cisco Solution

Support

• This design is straightforward to implement, use, and

oversee, following the recommended practices and

compatibility criteria of Cisco, NetApp, and SUSE.

• Support monitoring individual components, automating

and orchestrating solutions, and optimizing workloads.

Fig. 4 Container architecture with Cisco and NetApp Infrastructure

Figure 5 below depicts the logical structure of the

FlexPod Datacenter with SUSE Rancher, showcasing the

utilization of computing, network, and storage resources on

FlexPod through RKE2 components. The Cisco Nexus 9000

series switches within FlexPod provide the necessary

storage and network connection for the SUSE RKE2 Cluster

nodes running on Cisco UCS servers.

SUSE Rancher with Kubernetes simplifies storage

management by abstracting the intricacies of storage

provisioning and consumption, making persistent storage an

essential component for operating stateful containers. The

persistent volumes used for containers can either be static or

dynamically provisioned. In this particular scenario, the

persistent volumes are dynamically provisioned using

FlexPod and are facilitated by the NetApp Astra Trident CSI

Driver. Dynamic volume provisioning enables the creation

of storage volumes as needed. NetApp Astra Trident CSI

eliminates the requirement to pre-allocate storage for

containers and enables the provisioning of persistent storage

during container deployment. This solution employed NFS

and iSCSI storage to facilitate dynamic storage

provisioning.

SUSE Rancher employs a software-defined networking

(SDN) methodology to establish a cohesive cluster network,

facilitating communication between pods throughout the

SUSE RKE2 cluster. The SUSE RKE2 SDN establishes and

maintains this pod network, configuring an overlay network

with Open vSwitch (OVS). The RKE2 SDN system utilizes

Sriramaraju Sagi / IJCTT, 72(2), 75-81, 2024

80

Open vSwitch (OVS) as its default framework. RKE2 offers

the cluster administrator the option to deploy using either

one of the native SDN plug-ins provided by RKE2 or a

third-party SDN from the supported ecosystem, such as

Cisco ACI. We utilized the RKE2 native SDN plug-in,

specifically the OVN-Kubernetes, to implement this

solution.

Fig. 5 FlexPod Topology diagram with SUSE Rancher

5. Conclusion
This article delves deeply into the potential of

containerization technology in software deployment. The

research extensively explores the architecture of containers,

compares them to virtualization, and rigorously analyzes

their performance, scalability and security. The findings

strongly support the adoption of containerization,

highlighting its ability to enhance deployment processes and

operational flexibility. The study also emphasizes the

importance of optimizing and exploring container

ecosystems to address emerging challenges.

Fully leverage the benefits of this technology. In

conclusion, this summary effectively captures the essence of

the study and provides a looking perspective on

containerization technology.

6. Acknowledgements
This article was supported by the technical team from

Cisco and NetApp, Ulrich Kleidon, Cisco, Abhinav Sing,

and NetApp; we sincerely thank them for their contribution

and valuable input.

Controller Mgr

Config store encd

AP server

OVN Controller

Open vSwitch

netapp-trident-csi node

netapp-trident-csi controller

CNI

CSI

OVN Controller

Open vSwitch

netapp-trident-csi node

netapp-brident-csi controller

CNI

CSI

Storage Classes
SUSE Rancher ECM

Master Nodes Worker Nodes Worker Nodes

UCS Server

UCS FI-A UCS FI-B

UCS Server
Cisco UCS Compute

Cisco Nexus A Cisco Nexus B

NetApp AFF Cluster

VM VM

User Deployed Containers & VMS Persistent Storage for

Containers PVs & PVCs

Sriramaraju Sagi / IJCTT, 72(2), 75-81, 2024

81

References
[1] FlexPod Datacenter with SUSE Rancher for AI Workloads Design Guide, NetApp, Cisco, 2023. [Online]. Available:

https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_suse_rancher_design.html

[2] Diaz Jorge-Martinez et al., “Artificial Intelligence-based Kubernetes Container for Scheduling Nodes of Energy Composition,”

International Journal of System Assurance Engineering and Management, pp. 1-9, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[3] Laszlo Toka et al., “Adaptive AI-based Auto-Scaling for Kubernetes,” 20th IEEE/ACM International Symposium on Cluster, Cloud

and Internet Computing, Melbourne, VIC, Australia, pp. 599-608, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[4] Brandon Thurgood, and Ruth G. Lennon, “Cloud Computing With Kubernetes Cluster Elastic Scaling,” Proceedings of the 3rd

International Conference on Future Networks and Distributed Systems, Paris France, pp. 1-7, 2019. [CrossRef] [Google Scholar]

[Publisher Link]

[5] Nhat-Minh Dang-Quang, and Myungsik Yoo, “Deep Learning-Based Autoscaling Using Bidirectional Long Short-Term Memory for

Kubernetes,” Applied Sciences, vol. 11, no. 9, pp. 1-25, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[6] Chaoyu Wu, E Haihong, and Meina Song, “An Automatic Artificial Intelligence Training Platform Based on Kubernetes,” Proceedings

of the 2020 2nd International Conference on Big Data Engineering and Technology, Singapore China, pp. 58-62, 2020. [CrossRef]

[Google Scholar] [Publisher Link]

[7] Chun-Hsiang Lee et al., “Multi-Tenant Machine Learning Platform Based on Kubernetes,” Proceedings of the 2020 6th International

Conference on Computing and Artificial Intelligence, pp. 5-12, 2020. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1007/s13198-021-01195-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Artificial+intelligence-based+Kubernetes+container+for+scheduling+nodes+of+energy+composition&btnG=
https://link.springer.com/article/10.1007/s13198-021-01195-8
https://doi.org/10.1109/CCGrid49817.2020.00-33
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adaptive+AI-based+auto-scaling+for+Kubernetes&btnG=
https://ieeexplore.ieee.org/abstract/document/9139654
https://doi.org/10.1145/3341325.3341995
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cloud+Computing+With+Kubernetes+Cluster+Elastic+Scaling&btnG=
https://dl.acm.org/doi/abs/10.1145/3341325.3341995
https://doi.org/10.3390/app11093835
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Learning-Based+Autoscaling+Using+Bidirectional+Long+Short-Term+Memory+for+Kubernetes&btnG=
https://www.mdpi.com/2076-3417/11/9/3835
https://doi.org/10.1145/3378904.3378921
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Automatic+Artificial+Intelligence+Training+Platform+Based+on+Kubernetes&btnG=
https://dl.acm.org/doi/abs/10.1145/3378904.3378921
https://doi.org/10.1145/3404555.3404565
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-Tenant+Machine+Learning+Platform+Based+on+Kubernetes&btnG=
https://dl.acm.org/doi/abs/10.1145/3404555.3404565

